Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms

نویسندگان

  • Steffen Rechner
  • Annabell Berger
چکیده

We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Expressing and Estimating Arbitrary Statistical Models Using Markov Chain Monte Carlo

YADAS is a new open source software system for statistical analysis using Markov chain Monte Carlo. It is written with the goal of being extensible enough to handle any new statistical model and versatile enough to allow experimentation with different sampling algorithms. In this paper we discuss the design of YADAS and illustrate its power through five challenging examples that feature unusual...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Grapham: Graphical models with adaptive random walk Metropolis algorithms

Recently developed adaptive Markov chain Monte Carlo (MCMC) methods have been applied successfully to many problems in Bayesian statistics. Grapham is a new open source implementation covering several such methods, with emphasis on graphical models for directed acyclic graphs. The implemented algorithms include the seminal Adaptive Metropolis algorithm adjusting the proposal covariance accordin...

متن کامل

Markov Logic: A Language and Algorithms for Link Mining

Link mining problems are characterized by high complexity (since linked objects are not statistically independent) and uncertainty (since data is noisy and incomplete). Thus they necessitate a modeling language that is both probabilistic and relational. Markov logic provides this by attaching weights to formulas in first-order logic and viewing them as templates for features of Markov networks....

متن کامل

Probabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation

Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016